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The theory of open quantum systems is used to study the local temperature and heat currents in metallic
nanowires connected to leads at different temperatures. We show that for ballistic wires the local temperature
is almost uniform along the wire and Fourier’s law is invalid. By gradually increasing disorder, a uniform
temperature gradient ensues inside the wire and the thermal current linearly relates to this local temperature
gradient, in agreement with Fourier’s law. Finally, we show that while disorder is responsible for the onset of
Fourier’s law, the nonequilibrium energy distribution function is determined solely by the heat baths.
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I. INTRODUCTION

The search for a microscopic derivation of Fourier’s law,1

or even a microscopic demonstration of it, is still a major
theoretical challenge.2,3 In recent years, the problem seems
more relevant than ever due to both the continuous miniatur-
ization of electronic devices and the need for alternative en-
ergy sources. Both these trends require better understanding
of fundamental processes of energy transport in nanoscale
systems. Following, there have been many theoretical studies
of Fourier’s law in various systems, both classical and
quantum.4–15 In the quantum regime, attention has been fo-
cused mainly on small spin chains4,9,16,17 or quantum har-
monic oscillators.10,18

However, little is known on the energy transport in nano-
scale electronic quantum systems. This is true even for non-
interacting electrons. One of the reasons for this is that in
order to demonstrate the validity—or violation—of Fourier’s
law one needs to �i� define a local temperature out of equi-
librium and show that it develops a uniform gradient, �ii�
evaluate the local heat current, and �iii� show proportionality
between these two quantities. The first task is especially dif-
ficult since temperature is a global equilibrium property, and
it is not clear if a “local temperature” can be defined at all
when the system is out of equilibrium.19 For this reason,
recent studies of the origin of Fourier’s law either use a
phenomenological definition of local temperature �as an ex-
pectation value of a local energy operator4,16,20� or assume
that a temperature gradient is already present.21 An alterna-
tive route is to study the energy diffusion in closed systems
�i.e., without thermal baths�22 or to study a system with self-
consistent reservoirs.10,14

An additional reason that renders calculation of energy
transport in electronic systems a formidable task is the fact
that the size of the Hilbert space scales exponentially with
the number of electrons �even for noninteracting ones�, mak-
ing numerical calculations very demanding. This is why pre-
vious numerical calculations on heat transport in quantum
systems usually refer to very small systems, typically of the
order of ten spins �see, however, Ref. 23�.

Here we report a calculation of energy transport in elec-
tronic quantum wires that overcomes both the above issues.
It is based on solving the quantum master equation for non-
interacting electrons in the presence of dissipative baths

�held at different temperatures� in the Markov approxima-
tion. We use a recently suggested method24,25 to map the
many-electron problem to an effective single-particle system,
which allows calculations for systems orders of magnitude
larger than in previous studies and enables us to define a
local temperature which is directly accessible experimen-
tally, even out of equilibrium. We will discuss at the end of
this paper the possible role of interactions and work in this
direction.

II. MODEL

The system consists of a linear chain bonded to small
leads, which are connected to thermal baths held at different
temperatures �upper panel of Fig. 1�.24,25 A similar setup was
used for spin chains in, e.g., Ref. 26. The Hamiltonian of the
system is given by H=HL+HR+Hd+Hc, where HL,R,d
=�i�L,R,d�ici

†ci− t��i,j��L,R,d�ci
†cj +H.c.� are the tight-binding

Hamiltonians of the left lead �L�, right lead �R�, and wire �d�
�of length Ld�, respectively �t is the hopping integral, which
serves as the energy scale hereafter�. Hc= �gLcL

†cd,0
+gRcR

†cd,Ld
+H.c.� describes the coupling between the left

�right� lead to the wire. cL�R�
† are creation operators for an

electron at the point of contact between the left �right� lead
and the wire, and cd,0 �cd,Ld

� destroys an electron at the left-
most �right-most� sites of the wire. The on-site energies �i are
randomly drawn from a uniform distribution U�−W /2,
W /2�, with W being the disorder strength. The lattice con-
stant is taken to be a=1, and we consider here spinless elec-
trons.

The quantity of interest, from which the required informa-
tion �such as local temperature, heat current, etc.� may be
extracted, is the single-particle density matrix, defined by �
=�kk��kk��k��k��, where �kk�=Tr�ck

†ck��M̂B�, �M̂B is the full
many-body density matrix, and �k� are the single-particle
states. In Refs. 24 and 25 it was shown that � obeys a master
equation27 �setting �=1�,

�̇ = − i�H,�� + LL��� + LR��� 	 L̂��� , �1�

where LL�R���� are superoperators acting on the density ma-
trix, describing the left �right� thermal baths, held at tempera-
ture TL�R�, and in contact with the left �right�-most side of the
leads �solid lines in the upper panel of Fig. 1�. The superop-
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erators are defined in the Lindblad form27,28 via V operators,
L���=�k,k��−

1
2 
Vkk�

† Vkk� ,��+Vkk��Vkk�
† �, with 
· , ·� being the

anticommutator. The V operators are generalized to account
for the different baths and are given by25,26 Vkk�

�L,R�

=��kk�
�L,R�fD

�L,R���k��k��k��, where fD
�L,R���k�=1 / �exp�

�k−�

kBTL,R
�+1�

are the Fermi distributions of the left and right leads, with
� as the chemical potential. The coefficients �kk�

�L,R�

= ��ri�SL,R
�k�ri��0�k�

� �ri�� �where �k�r� are the single-particle
wave functions� describe the overlap between the single-
particle states �k� and �k�� over the region of contact SL�R�
between the left �right� baths and the corresponding junction
leads, shown by the solid lines in the upper panel of Fig. 1.
�0 describes the strength of electron-phonon �bath� interac-
tion. The form above can be derived from first principles by
tracing out the bath degrees of freedom, with the latter
formed by a dense spectrum of boson excitations �e.g.,
phonons�, which interact locally with electrons at the edges
of the system.

III. LOCAL TEMPERATURE

The nonequilibrium steady state of the system is given by

the solution of the equation L̂���=0. In order to calculate the
local temperature, we attach a third thermal bath �described
by an additional term Ltip�r���� in the master equation�
which is connected to a given position r of the wire and
serves as an external probe �upper panel of Fig. 1�. The re-

sulting equation for the steady state with the inclusion of this

probe now reads �L̂+Ltip�r�����=0. The temperature Ttip of
the additional operator is changed, and the resulting local
density, n�r�=�k�kk��k�r��2, is compared to that obtained
without the additional operator.29 We then define the local
temperature as that Ttip for which there is minimal change in
the local density.25 Physically, this corresponds to placing a
local temperature probe in close proximity to the wire.30

When the probe has the same local temperature of the wire,
there is no net heat flow between them, and thus the local
properties of the wire are unchanged.

Figure 1 shows the local temperature profile along a chain
of length Ld=150. The numerical parameters are the follow-
ing: lead dimensions Lx=Ly =3, temperature of the left and
right leads is TL=0.1 and TR=1, respectively, and electron
number nE=56 �corresponding to one third filling�. The dis-
order strength is W=0 �solid line�, W=0.1 �small dashes�,
and W=0.5 �large dashes� and averaged over 500 realizations
of disorder �all calculations in this paper were performed
over a wide range of parameters, yielding similar conclu-
sions�. One can see several features from Fig. 1. The most
prominent feature is the fact that for clean �W=0� and
weakly disordered �W=0.1� wires, the temperature hardly
changes along the wire. This is evidence that Fourier’s law is
violated under these conditions. Instead, a uniform tempera-
ture gradient at the center of the wire is recovered for large
disorder �W=0.5�. Note that the local temperature is roughly
constant up to a “thermal length” from the contacts. This
length is determined by the coupling between the wire and
the leads, and we have found in our simulations that with
increasing wire length, the region of uniform temperature
gradient increases and the thermal length remains constant.

In some systems the onset of Fourier’s law seems to co-
incide with that of chaos4,18 while in others this is not the
case.5,7 It is thus of interest to determine the relation between
Fourier’s law and chaos in the present context. In order to do
so, we plot in the inset of Fig. 1 the distribution function P�s�
for the level spacing s of neighboring single-particle energy
levels for W=0.1 �thin line� and W=0.5 �thick line�. The
dashed line is the Wigner-Dyson distribution, PWD�s�
=s exp�−�s2� �where � is some constant�, which is conjec-
tured to correspond to the onset of quantum chaos.31 As seen,
the distribution for weak disorder shows features reminiscent
of the ordered system and is very different from the Wigner-
Dyson distribution. Accordingly, Fourier’s law is invalid. On
the other hand, for strong disorder we see both agreement
with the Wigner-Dyson distribution and a uniform tempera-
ture gradient at the center of the wire, suggesting that indeed
these have the same physical origin.32

IV. HEAT CURRENT

The next step in validating Fourier’s law comes from cal-
culating the local heat current j�r� and evaluating the thermal
conductivity 	 such that j�r�=−	�r��T�r�. It is clear that for
a uniform temperature profile �as that of a clean wire�, a
finite heat current results in a divergent 	. On the other hand,
for the system presented here one expects that the heat cur-
rent is always finite, since energy is always injected and
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FIG. 1. �Color online� Local temperature as a function of posi-
tion along the wire. The local temperature is calculated for three
different values of disorder, W=0 �solid�, 0.1 �small dashes�, and
0.5 �large dashes�. For clean wires �W=0� the temperature is uni-
form, and a uniform temperature gradient builds up as the disorder
increases. The solid line is a guide for the eyes, pointing out the
region from which the local thermal conductivity is calculated �Fig.
2 and text below�. Upper panel: geometry of the model system. The
solid lines at the edges correspond to the contact area of the thermal
baths. Inset: energy-level spacing distribution for W=0.1 �thin line�
and W=0.5 �thick line� and the Wigner-Dyson distribution �dashed
line�, marking the onset of chaos.
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extracted from the system. It is thus natural to define a global

thermal conductivity, K=−
Ldj̄

TR−TL
, where j̄ is the heat current

averaged over the whole wire. Following this definition, it is
evident that K= 	̄ �where 	̄ is the average over the wire of
the local thermal conductivity defined via Fourier’s law� only
when Fourier’s law is valid. This definition thus gives us a
mean to point to the onset of Fourier’s law.

To make this argument substantial one must calculate the
local heat current. Due to the noninteracting form of the
Hamiltonian of the system we can define the heat current
operator via a time derivative of the local energy operator

Ĥi, i.e.,
dĤi

dt = ĵi−1− ĵi �in units of t2, taking �=1�.21,33 The
local energy operator in the wire is defined as Hi=�i�i��i�
− 1

2 t��i��i+1�+ �i��i−1�+H.c.�. The time derivative of a gen-

eral operator Ô in the Lindblad formalism is given by28 dÔ
dt

= i�H , Ô�+�kk��−
1
2 
Vkk�

† Vkk� , Ô�+Vkk�
† ÔVkk��. From this rela-

tion one may find ĵi and calculate its expectation value, ji.
In Fig. 2�a� ji is plotted as a function of position along the

wire �same parameters as in Fig. 1� for different values of
disorder W=0,0.1, . . . ,0.5. Note that in the central region of
the wire the heat current is uniform and increases at a dis-

tance of the order of the thermal length of the leads �solid
lines in the W=0.5 curve are guides for the eyes� due to the
contact with the heat baths. The inset of Fig. 2�b� shows the
averaged heat current �over the whole wire� as a function of
temperature difference 
T=TR−TL for different values of
disorder. From the linear regime one can extract the global
K, shown by empty circles in Fig. 2�b� as a function of
disorder. On the other hand, one can extract the averaged
local 	 by using the local heat current �Fig. 2�a�� and the
local temperature �from Fig. 1�, calculated and averaged over
sites close to the center of the wire, in the region where the
temperature profile is linear, i.e., with a uniform temperature
gradient, and the heat current is constant �solid lines in Figs.
1 and 2�a��. The values of the local 	 are shown as filled
circles in Fig. 2�b� and exhibit a divergence for clean wires.
Only at large disorder, the two definitions of thermal conduc-
tivity coincide, pointing to the onset of Fourier’s law. We
note that in our calculations we find the �averaged� heat cur-
rent to be inversely proportional to the wire length, which,
along with a uniform temperature gradient, implies that the
�local� thermal conductivity is constant.

In order to further determine the role of disorder, we study
the local and global electron energy distribution functions,
both of which can be measured experimentally.34 In terms of
the density matrix, the global distribution function is simply
f�Ek�=�kk and the local distribution function is given by
f loc�Ek ,r�= ��k�r��2�kk. Figure 3 shows the distribution func-
tion for the clean wire �W=0, squares� and disordered wire
�W=0.5, circles� �same parameters as in Fig. 1� as a function
of energy. As seen, there is hardly a difference between the
two functions. The solid line is the curve f�E�= 1

2 �fL�E�
+ fR�E��, where fL�R��E� is the Fermi distribution of the left
�right� lead with the corresponding temperature. The excel-
lent agreement between the numerical curves and the aver-
aged density suggests that one cannot consider the wire as a
system with an effective temperature Teff=

1
2 �TL+TR� but
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FIG. 2. �Color online� Local heat current and thermal conduc-
tivity. �a� Local heat current j as a function of position for different
disorder strengths, W=0,0.1, . . . ,0.5. The current is largest close to
the leads, where the contact with the heat baths is located. The solid
line on W=0.5 is a guide for the eyes. �b� Local �solid circles� and
global �empty circles� thermal conductivities as a function of disor-
der. The two tend to the same value only with increasing disorder
when Fourier’s law becomes valid. Inset: averaged heat current as a
function of temperature difference 
T for different disorder
strengths. From the linear regime of these curves the global thermal
conductivity was evaluated.
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FIG. 3. �Color online� Global electron distribution functions
with and without disorder. The distribution function is evaluated for
a clean wire �squares� and disordered wire, W=0.5 �circles�. The
thick line corresponds to an average distribution f�E�= 1

2 �fL�E�
+ fR�E��, where fL�R��E� is the Fermi distribution of the left �right�
lead with the corresponding temperature. Inset: the local electron
distribution function at the edge of the wire �thick line� and the
center of the wire �thin line� for a clean system �upper panel� and a
disordered system �lower panel�.
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rather it is the distribution function itself that is averaged and
that disorder does not affect the distribution function.

In the inset of Fig. 3 we plot the local distribution func-
tion for the clean and disordered wires at the left edge of the
wire �thick line� and at the center of the wire �thin line�.
Again, the curves for clean and disordered wires are very
similar. We thus conclude that in our geometry, in contrast to
mesoscopic wires,34 one cannot attribute to the local distri-
bution a simple position dependence even in the presence of
disorder.

These findings show that the energy distribution function
is only determined by the boundary conditions, namely, those
provided by the bath operators and not by the local structure
�i.e., the Hamiltonian�. On the other hand, the nature of heat
transport is determined solely by the microscopic character
of the Hamiltonian. This implies that Fourier’s law cannot be
validated from measuring the local distribution function. It
also suggests that one cannot map between models of coher-
ent disorder and models of self-consistent baths.10,14 The lat-
ter inherently introduce dephasing into the dynamics and im-
ply local equilibrium and Fourier’s law. Coherent disorder
�such as that introduced here�, on the other hand, does not,
and one cannot a priori say whether Fourier’s law is valid or
not. Finally, these findings indicate that while one may use
Hamiltonian �closed� systems to evaluate the linear-response
thermal conductivity, the general nonequilibrium properties
induced by finite temperature gradients need to be deter-
mined using models of open systems.

V. SUMMARY

In this paper we have studied the onset of Fourier’s law in
a model system of one-dimensional noninteracting tight-
binding electrons. Using the theory of open quantum
systems24,25 we have studied the electron wire under the non-
equilibrium situation in which it is held at two different tem-
peratures at its edges. We calculated the local temperature,
heat current, and distribution functions for different values of
�diagonal� disorder in the wire. Our main findings are as
follows. For a clean wire, the temperature is uniform along
the wire, and thus Fourier’s law is invalid. Upon increasing
disorder, a uniform temperature gradient evolves in the bulk
of the wire, eventually giving rise to a fully developed Fou-
rier’s law. Thus, we conclude that Fourier’s law is a cross-
over phenomenon in this system.35 Finally, we find that, as

opposed to the temperature profile, the energy distribution
function is independent of disorder �even the local distribu-
tion function� and it is determined solely by the boundary
conditions.

One question naturally arises. What is the origin of Fou-
rier’s law and its relation to the disorder strength? A naive
answer would be that the onset of Fourier’s law is related to
the localization length. Once the localization length �deter-
mined from the disorder strength� crosses the sample length,
then states become localized and weakly coupled. However,
from examining the localization length in our model �by nu-
merically calculating the inverse participation ratio�, we find
that at disorder strengths at which the onset of Fourier’s law
was observed �i.e., a fully developed temperature gradient�,
the localization length is already smaller than the wire length
�by a factor of 4�. We thus conjecture that there is another
length scale that plays a role here, which is the length scale
at which a local equilibrium can be defined �see Ref. 36�. Its
relation to the localization length is yet to be determined and
we leave this for future studies.

One possible way to verify Fourier’s law is to study the
local temperature which can be measured experimentally.30

Relevant experimental systems for which our predictions
may be tested can be, e.g., carbon nanotubes,37 quantum
point contacts,38 atomic-size metallic wires,39 or silicon
nanowires,40,41 where measurements of thermal conductance
and thermopower have already been demonstrated. A differ-
ent route is to measure the length dependence of the thermal
conductivity, as was recently applied to nanotubes.42

Finally we note that the above theory did not include the
effects of electron interactions. However, since disorder also
affects interacting systems, we expect that our conclusions
may be valid also in the interacting case. While for some
quasi-one-dimensional systems electron interactions may not
be very important, it is nevertheless of interest to find out
whether electron interactions alone suffice for the validity of
Fourier’s law even in clean wires. To resolve this issue one
must employ a more elaborate method that can encompass
both interactions and environments.43 Such studies are cur-
rently underway.
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